Тесты на тему "Математика МТИ (Занятие 1-12) Ответы на итоговый тест"
7
Тест был сдан в 2024 году.
Представлены ответы на большинство вопросов по предмету "Высшая математика.ои(dor)".
Итоговый набранный балл 97 из 100 (Скриншот прилагаю).
ВНИМАНИЕ! Покупайте работу, только убедившись, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.
Представлены ответы на большинство вопросов по предмету "Высшая математика.ои(dor)".
Итоговый набранный балл 97 из 100 (Скриншот прилагаю).
ВНИМАНИЕ! Покупайте работу, только убедившись, что ваши вопросы совпадают с представленными ниже. Для этого рекомендую сначала запустить тест и сверить хотя бы несколько вопросов.
Демо работы
Описание работы
УЧЕБНЫЕ МАТЕРИАЛЫВведение
Занятие 1
Занятие 2
Занятие 3
Занятие 4
Занятие 5
Занятие 6
Занятие 7
Занятие 8
Занятие 9
Занятие 10
Занятие 11
Занятие 12
Заключение
СПИСОК ВОПРОСОВ:
Базисным минором матрицы называется всякий отличный от нуля минор, порядок которого равен … матрицы
Вектор a{4, ?8, 11} имеет длину, равную …
• v201
• v202
• v203
Векторное произведение векторов a{1, 2, 3} и b{6, 7, 8} равно …
• {-7, 10, 6}
• {-5, 10, -5}
• {-7, -10, -6}
Всякий вектор на плоскости можно выразить в виде линейной комбинации любых двух … векторов
Говоря о взаимном расположении двух прямых y? = 7x-3 и y? = (-1/7) x + 3 на плоскости, можно утверждать, что эти прямые …
Дистрибутивность (*) умножения справа относительно сложения матриц выглядит так: …
• C*(A+B)=C*A+C*B
• (A+B)*C=A*C+B*C
• C*(A-B)=C*A-C*B
• (A-B)*C=A*C-B*C
Для системы уравнений {3x? ? x? = 1, 2x? + x? = 5, x? ? 2x? = 0 установите соответствие между характеристиками и их значениями:
A. Ранг основной матрицы
B. Ранг расширенной матрицы
C. Количество решений системы
D. 2
E. 3
F. 0
Если вектор a(3, ?4, 5) умножить на число 6, тогда сумма координат вектора 6a будет равна …
• 25
• 24
• 26
Если какая-либо строка (столбец) матрицы состоит из одних нулей, то ее определитель равен …
Если уравнение плоскости задано точкой A(?2, 2, 8) и нормалью n(1, 2, 3), то коэффициент при переменной y в данном уравнении равен …
Если элементы двух строк (столбцов) матрицы …, то определитель равен нулю
Каноническое уравнение прямой, проходящей через точки A(-3,2) и B(7,-8), имеет вид …
• (x + 3) / ?10 = (y ? 2) / ?10
• (x ? 3) / 2 = (y ? 2) / 3
• (x + 3) / 10 = (y ? 2) / ?10
Координаты середины отрезка с концами в точках A(-3,-2,5) и A(5,2,1) равны …
• (4,2,6)
• (1,0,3)
• (7,8,9)
Косинус угла между прямыми y?=-2x+5 и y?=2x-2 равен …
• 0,5
• 1
• 0,6
Матрица, дважды транспонированная, равна …
• обратной матрице
• исходной матрице
• транспонированной матрице
• квадрату транспонированной матрицы
Матрица А называется …, если ее определитель отличен от нуля
• вырожденной
• обратной
• невырожденной
Матрица называется … матрицей, если в каждой ее ненулевой строке имеется такой ненулевой элемент, что все остальные элементы столбца, содержащего этот элемент, равны нулю
Минор элемента матрицы совпадает с алгебраическим дополнением в случае, когда …
• (i + j) – нечетное число
• (i + j) – четное число
• (i + j) = 1
Ордината точки пересечения прямых y?=2x+1 и y?=-2x+3 равна …
Переход от матрицы А к новой матрице, в которой строки и столбцы поменялись местами с сохранением порядка, называется … матрицы А
Произведением матриц A = ((2, ?5), (?3, 6), (4, 7)) и B = ((?3, 4), (5, ?9)) называется матрица C, равная …
• ((31, ?53), (?39, 66), (?23, 47))
• ((?31, 53), (39, ?66), (23, ?47))
• ((25, 66), (?17, 47), (31, ?53))
• ((21, 35), (33, ?66), (32, ?47))
Произведением матриц A = ((2, ?5), (?3, 6), (4, 7)) и B = ((?3, 4), (5, ?9)) называется матрица C, равная …
1 ((?7452, 9355), (7484, ?9323))
2 ((1076, ?1325), (?1060, 1341))
3 ((?148, 195), (156, ?187))
4 ((24, ?25), (?20, 29))
Прямая, проходящая через основания перпендикуляра и наклонной, называется …
• диагональю
• секущей
• проекцией
Пусть дан вектор a{?3, 7, 2}, тогда длина вектора ?4a равна …
• v992
• v990
• v989
Пусть дана матрица A = ((1, ?1, 2), (3, 4, ?5), (7, ?9, ?8)), тогда определитель транспонированной матрицы равен
• -167
• -175
• -176
Пусть дана матрица A = ((2, 3, ?4), (5, ?6, ?7), (8, 9, 1)), тогда определитель матрицы равен …
Пусть дана матрица A = ((3, ?2), (?1, 5)), тогда вторая степень матрицы A (A?) равна …
• ((11, ?16), (?8, 27))
• ((9, 4), (1, 25))
• ((?3, 2), (1, 5))
• ((9, ?4), (1, 25))
Пусть дана система уравнений A = (2x? ? 3x? + x? = 5, x? + x? ? 3x? = 7, 5x? ? x? + 6x? = 1, тогда определитель |A| этой системы равен …
• 62
• 63
• 64
Пусть дана система уравнений A = (2x? ? 3x? + x? = 5, x? + x? ? 3x? = 7, 5x? ? x? + 6x? = 1, тогда определитель |A?| этой системы равен …
• 142
• 143
• 144
Пусть дана система уравнений A = {2x? ? 3x? + x? = 5, x? + x? ? 3x? = 7, 5x? ? x? + 6x? = 1, тогда определитель |A?| этой системы равен …
• -49
• -48
• -50
Пусть дана система уравнений A = {2x? ? 3x? + x? = 5, x? + x? ? 3x? = 7, 5x? ? x? + 6x? = 1, тогда определитель |A?| этой системы равен …
• -114
• -115
• -116
Пусть даны векторы a{2, 3, 4} и b{5, 6, 7}, тогда сумма координат вектора a + b равна …
Разность координат нормального вектора плоскости 2x-y+3z-2=0 равна …
Разностью матриц А и В называется … матрицы А с матрицей, противоположной матрице В
Разностью матриц A = ((7, ?3), (2, 0)) и B = ((5, ?2), (?3, 8)) является матрица C, равная …
• ((2, ?1), (5, ?8))
• ((2, 1), (5, 5))
• ((2, ?5), (?5, 0))
• ((2, ?8), (?1, 5))
Ранг матрицы при элементарных преобразованиях …
• меняется
• не меняется
• уменьшается
• увеличивается
Расположите в правильном порядке шаги решения системы уравнений методом Гаусса:
1 составить расширенную матрицу системы
2 с помощью элементарных преобразований привести расширенную матрицу системы к ступенчатому виду
3 на основе полученной ступенчатой матрицы составить и решить систему линейных уравнений
Расположите записи векторных операций в порядке «скалярное произведение векторов, векторное произведение векторов, смешанное произведение векторов»:
1 (a, b)
2 a ? b
3 (a ? b, c)
Расположите значения миноров M??, M??, M??, M?? матрицы A = ((2, 3, 4), (5, ?6, 7), (?8, 9, 0)) в порядке возрастания:
1 M??
2 M??
3 M??
4 M??
Расположите обозначения взаимного расположения прямой l и плоскости ? в порядке «прямая пересекает плоскость, прямая перпендикулярна плоскости, прямая параллельна плоскости»:
1 l ? ?
2 l ? ?
3 l ? ?
Расположите прямые y?, y? и y?, заданные уравнениями, в порядке возрастания их угловых коэффициентов:
1 y?=5
2 y?=7x-2
3 y?=-x+3
Расстояние от точки A(1, ?4) до прямой y = 4/3 x ? 4 равно …
Расстояние от точки A(2,4,1) до плоскости 2x-y+3z=2 равно …
• 1/v14
• 2/v14
• 3/v15
Решением системы уравнений A = {2x? ? 3x? + x? = 5, x? + x? ? 3x? = 7, 5x? ? x? + 6x? = 1 будет …
• ((142/63), (?7/9), (?116/63))
• ((142/63), (?7/12), (?116/63))
• ((?142/63), (7/9), (?116/63))
Система линейных уравнений называется … системой линейных уравнений, если все свободные члены в этой системе равны нулю
Скалярное произведение векторов a{2, 5, 7} и b{?3, 4, ?9} равно …
Сопоставьте миноры матрицы A = ((2, 3, 4), (5, ?6, 7), (?8, 9, 0)) с их значениями:
A. M??
B. M??
C. M??
D. 56
E. -36
F. -6
Сумма координат вектора a = 2i + 3j ? k равна …
Сумма координат нормального вектора плоскости 2x-y+3z-2=0 равна …
Сумма координат середины отрезка с концами в точках A(-3,-2,5) и A(5,2,1) равна …
Сумма координат точки пересечения прямых y?=3x+2 и y?=-2x+3 равна …
Сумма элементов второй строки матрицы, обратной к матрице A = ((2, 3, 1), (0, 1, 0), (3, 1, 1)), равна …
Транспонированная матрица A? для матрицы A = ((2, ?5), (?3, 6), (4, 7)) имеет вид: …
• ((4, 7), (?3, 6), (2, ?5))
• (?5, 6, 7), (2, ?3, 4))
• ((7, 6, ?5), (4, ?3, 2))
• ((2, ?3, 4), (?5, 6, 7))
Уравнение … является параметрическим уравнением прямой
• (x ? z) / 3 = (y + 1) / z
• 3x + 2y ? 5 = 0
• {x = 3t + 1, y = t ? 1
Уравнение плоскости, проходящей через точки A(-2,2,8), B(4,0,6) и C(2,0,6), имеет вид …
• x+y=0
• y-z+6=0
• x+y-6=0
Уравнение прямой, проходящей через точки A(-2,-3) и B(-7,-5), имеет вид …
• y=0,4x+2,2
• y=0,4x-2,2
• y=0,4x-3,2
Установите соответствие между понятием и его определением:
A. Нуль-вектор
B. Коллинеарные векторы
C. Длина вектора
D. вектор, начало и конец которого совпадают
E. векторы, лежащие на одной прямой или на параллельных прямых
F. длина соответствующего отрезка
Установите соответствие между способом задания плоскости в пространстве и ее уравнением:
A. Даны тока M(x?, y?, z?) и нормаль n(A, B, C)
B. Вектор l(m, n, p) параллелен плоскости, которая проходит через точки M?(x?, y?, z?) и M?(x?, y?, z?)
C. Общее уравнение плоскости с нормальным вектором n(A, B, C)
D. A(x – x?) + B(y – y?) + C(z – z?)
E. |(x – x?, y – y?, z – z?), (x? – x?, y? – y?, z? – z?), (m, n, p)| = 0
F. Ax + By +Cz + D = 0
Установите соответствие между способом задания прямой на плоскости и уравнением прямой:
A. Известны точка M(x?,y?) и угловой коэффициент k
B. Известны точки A(x?,y?) и B(x?,y?)
C. Известны отрезки a и b
D. y = y? + k(x ? x?)
E. (x ? x?) / (x? ? x?) = (y ? y?) / (y? ? y?)
F. x / a + y / b = 1
Числовой множитель можно … за знак транспонирования
• вносить
• удалять
• выносить
• умножать
Похожие работы
Другие работы автора
НЕ НАШЛИ, ЧТО ИСКАЛИ? МОЖЕМ ПОМОЧЬ.
СТАТЬ ЗАКАЗЧИКОМ